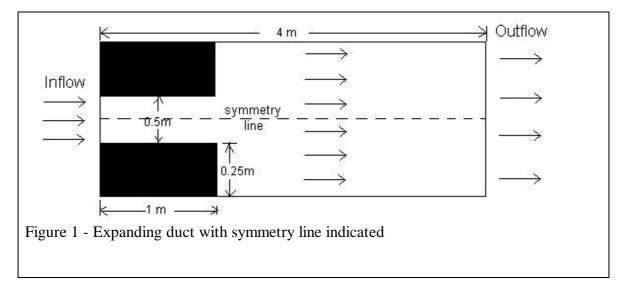
Fire Safety Engineering Group Maritime Greenwich Campus, Cooper Building, University of Greenwich, King William Walk, London SE10 9JH, UK.

Date : 4/2/2000


PART 1 – CONTROLLED TEST SETUP

Test case : **Symmetry boundary condition test – 2000/1/3** Document Version 1.0

PART 1 – CONTROLLED TEST SETUP

Case: Symmetry boundary condition test – 2000/1/3			
User details			
Run by:	Address:		
Date:			
Phone no:			
email:			
Fire modelling Software			
SMARTFIRE CFX PHOENICS			
Version/build number			
Date of release			
Our service of Constants			
Operating System			
Windows 95/98/2000 Windows NT Unix Dos			
Version/build number			
Machine			
PC Unix Workstation			
CPU:			
Memory:			
Case description			

This case is intended to test if the symmetry function works correctly for turbulent isothermal flow. The case involves flow expansion from a small duct into a larger duct. The configuration is shown in Figure 1 below. The case was simulated using the whole flow domain and then repeated using a symmetry boundary condition along the central axis. Two tests must be conducted using the full domain and using a half domain with a symmetry plane. The results from these two tests should agree with one another. The flow enters the domain at 1.0m/s.

Required Results

The results should be supplied as graphs and as Excel97 worksheets This case is specifically designed for testing the symmetry treatment of each case. A whole field velocity vector plot should be supplied for both cases along with a uvelocity profile at the outlet for both cases.

CFD set up

1D 2D 3D

Transient Steady State

Differencing Schemes

Temporal:

Fully Implicit Crank-Nicolson Explicit Exponential
--

Spatial:

Invited Control Difference	Hybrid	Central Difference	Upwind	
	11,0110	Contrar Difference	op mina	1

Notes:

Physical Models

Radiation Model (if not listed please specify in the space provided)

None	Six flux	Discrete Transfer	Monte Carlo	Radiosity	

Notes:

Parameters

Turbulence model (if not listed please specify in the space provided)				
Laminar	k-ε	buoyancy modified k-ε	RNG	

Notes:

Turbulence Parameters*:

C _µ	σ _k	σ_{ϵ}	$C_{1\epsilon}$	$C_{2\epsilon}$	C ₃
0.09	1.0	1.3	1.44	1.92	1.0

^{*}If different parameters are being used please specify in the table above.

Combustion Model (if not listed please specify in the space provided)

	(9 1	1 37 1	1 /
none	Volumetric heat source	Mixed is burnt	Eddy break up
Magnussen soot model			

Combustion Parameters:

Compressibility

Incompressible Boussinesq Weakly compressible Fully compressible				
	Incompressible	Boussinesq	Weakly compressible	Fully compressible

Compressibility Parameters:

External Pressure 1.01325e+05 Pa

Buoyancy Yes No

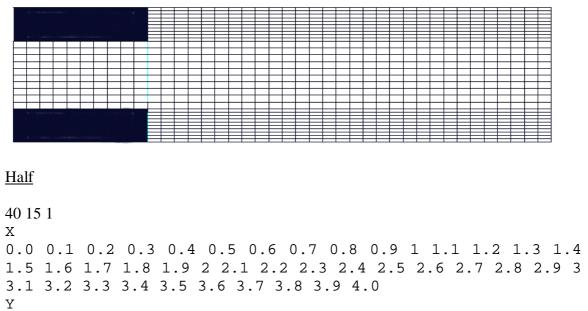
Gravity 0.0m/s

Material Properties

Material Name	Air
Density	Determined by compressibility (Ideal Gas Law) Molecular
	Weight of air is 29.35

Viscosity	Laminar 1.798e-005kg/m.s + Value determined from turbulence
	model
Conductivity	0.02622 W/m.K
Specific heat capacity	1007.0 J/kg.K

Initial Values


U-VELOCITY	0.0
V-VELOCITY	0.0
W-VELOCITY	0.0
PRESSURE	0.0
TEMPERATURE	n/a
KINETIC ENERGY	0.01
DISSIPATION RATE	0.01

Boundary conditions

Inlet U-velocity:1.0 m/s Dissipation rate:0.01 Kinetic energy:0.01

Outlet: (Pressure boundary) 0.0 Pa

Mesh

0.0 0.05 0.1 0.15 0.2 0.25 0.275 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475 0.5 Ζ 0.0 1.0 Whole 40 30 1 Х 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 Υ $0.0 \ 0.025 \ 0.05 \ 0.075 \ 0.1 \ 0.125 \ 0.15 \ 0.175 \ 0.2 \ 0.225 \ 0.25$ 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1 Ζ 0.0 1.0

Model Definition files

<u>Convergence</u>

Please specify your convergence criteria including type of error estimator and tolerance value for each variable

<u>Runtime</u>

Results files/Archiving:

Document cross-reference:

User Guides, etc

Comments