Fire Safety Engineering Group Maritime Greenwich Campus, Cooper Building, University of Greenwich, King William Walk, London SE10 9JH, UK.

Date : 4/2/2000

PART 1 – CONTROLLED TEST SETUP

Test case : Fire in a completely open compartment with lid case – 2000/2/3

Document Version 1.1

PART 1 – CONTROLLED TEST SETUP

Case: Simple volumetric fire under a lid case – 2000/2/3

User details	
Run by:	Address:
Date:	
Phone no:	
email:	

Fire modelling S	Softwar	e				
SMARTFIRE	CFX	PHOENICS				
Version/build nu Date of release_	umber_					
Operating Syste	<u>m</u>					
Windows 95/98	/2000	Windows NT	Unix	Dos		

Version/build number_

3 6 1 1
Machine
wathint

PC	Unix Workstation	

CPU: Momor

Memory:

Case description

This Fire case utilises a volumetric heat source. The compartment is completely open apart from a solid ceiling. The fire is located on the floor at the centre of the building. The prescribed fire volume is 1 m x 1 m x 1 m. The fire power is defined as $H = 0.188t^2(kW)$ (i.e. t squared fire and t is measured in seconds). The compartment is $5m(\text{wide}) \times 5m(\log) \times 3m(\text{high})$. It should be noted that this is a hypothetical case for which there is no experimental data. The walls are adiabatic. The ambient temperature is 303.75K.

Required Results

The results should be supplied as graphs and as Excel97 worksheets This case is used for comparison between the codes.

All the results are instantaneous results for the 110^{th} second. Temperature profile across the cabin 0.1m below the ceiling.

remperature prome across the caom 0.5m below the coming.
--

CFD set up

1D 2D 3D

Transient Steady State

110*1s timesteps (110s total)

Differencing Schemes

Temporal:

Fully Implicit	Crank-Nicolson	Explicit	Exponential	

Spatial:

H	ybrid	Central Difference	Upwind		
---	-------	--------------------	--------	--	--

Notes:

Physical Models

Radiation Model (*if not listed please specify in the space provided*)

 None
 Six flux
 Discrete Transfer
 Monte Carlo
 Radiosity

Notes:

(1) If the fire modelling software does not possess the six-flux model, a discrete transfer model may be used in place of the six-flux model. If the discrete transfer model must be used instead of a six flux model then the discrete model must be made to emulate the behaviour of the six-flux model. This can be achieved by using 6 rays in the co-ordinate directions. If a radiation mesh needs to be specified, this should be identical to the flow mesh. If this is not possible, then at least the same number of cells in each direction must be specified. The details of the mesh must also be provided with your results.

Parameters

The absorption coefficient (a) is equal to 0.7

It is assumed there is no scattering so $s = 0.0$.	

Turbulenc	e mode	${f l}$ (if not listed please specify in t	he space pro	ovided)
Laminar	k-ε	buoyancy modified k-ε	RNG	

Notes:

Turbulence Parameters^{*}:

C_{μ}	σ_k	σε	C _{1ε}	$C_{2\epsilon}$	C ₃
0.09	1.0	1.3	1.44	1.92	1.0

^{*}If different parameters are being used please specify in the table above.

Combustion Model (if not listed please specify in the space provided)

none	Volumetric heat source	Mixed is burnt	Eddy break up
Magnuss	sen soot model		
Combust	tion Parameters:		

Compressibility

1 1			
Incompressible	Boussinesq	Weakly compressible	Fully compressible

Compressibility Parameters:

Buoyancy Yes No

Gravity -9.81m/s in the v-velocity direction.

Material Properties

Material Name	Air	
Density	Determined by compressibility (Ideal Gas Law) Molecular	
	Weight of air is 29.35	
Viscosity	1.6e-005 + Value determined from turbulence model	
Conductivity	0.02622	
Specific heat capacity	1045.78	

Initial Values

U-VELOCITY	0.0
V-VELOCITY	0.0
W-VELOCITY	0.0
PRESSURE	0.0
TEMPERATURE	303.75
KINETIC ENERGY	0.01
DISSIPATION RATE	0.01

Boundary conditions

All walls are assumed to be adiabatic for the first phase of the validation process. In the first phase of validation the walls are perfect reflectors of radiation, i.e. the emissivity of the walls is 0. The default log-law turbulent wall functions should be used.

An adiabatic floor covering the whole of the bottom of the domain An adiabatic ceiling centrally located 3m above the floor measuring 5m x 5m.

The centrally located fire volume is $1m \ge 1m \ge 1m$. The fire power is defined by the standard method, i.e., $H = 0.188t^2(kW)$ (i.e. t squared fire)

Extended regions are required all around the compartment and outlet boundary conditions are applied to these patches with pressure set to equal 0.0Pa.

Mesh

Model Definition files

Convergence

Please specify your convergence criteria including type of error estimator and tolerance value for each variable

Runtime

Results files/Archiving:

Document cross-reference:

User Guides, etc

Comments